Inhibition of mutagenic translesion synthesis: A possible strategy for improving chemotherapy?

نویسندگان

  • Kinrin Yamanaka
  • Nimrat Chatterjee
  • Michael T Hemann
  • Graham C Walker
چکیده

DNA damaging chemotherapy is the first line of treatment for certain cancers, but its longterm success is often marred by the eventual acquisition of chemoresistance. Other cancers cannot be treated because they are intrinsically resistant to such chemotherapy. These 2 types of resistance are coupled in the context of translesion synthesis (TLS), which is carried out by specialized TLS DNA polymerases that can replicate past DNA lesions but in a lower fidelity manner. First, TLS DNA polymerases permit the bypass of modified DNA bases during DNA synthesis, thereby allowing proliferation to continue in the presence of chemotherapy, an issue of particular relevance to intrinsic drug resistance. Second, mistakes introduced by TLS polymerases copying over DNA lesions introduced during the chemotherapy lead to mutations that contribute to acquired resistance. These dual functions of mutagenic TLS polymerases with respect to chemoresistance make these proteins very promising targets for adjuvant therapy. The major branch of mutagenic TLS requires REV1, a Y family DNA polymerase that recruits other TLS polymerases with its C-terminal domain (CTD) including POL z, which is also required. Recent evidence obtained using mouse models is summarized, which shows that interfering with REV1/POL z-dependent mutagenic TLS during DNA damaging chemotherapy can help overcome problems due to both intrinsic resistance and acquired resistance. Ways to develop drugs that block mutagenic TLS are also considered, including taking advantage of structural knowledge to target key protein-protein interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error-prone translesion synthesis mediates acquired chemoresistance.

The development of cancer drug resistance is a persistent clinical problem limiting the successful treatment of disseminated malignancies. However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. Error-prone translesional DNA synthesis (TLS) is known to underlie the mutagenic effects of numerous anticancer agents, but l...

متن کامل

Inhibition of DNA replication fork progression and mutagenic potential of 1, N6-ethenoadenine and 8-oxoguanine in human cell extracts

Comparative mutagenesis of 1,N(6)-ethenoadenine (epsilonA) and 8-oxoguanine (8-oxoG), two endogenous DNA lesions that are also formed by exogenous DNA damaging agents, have been evaluated in HeLa and xeroderma pigmentosum variant (XPV) cell extracts. Two-dimensional gel electrophoresis of the duplex M13mp2SV vector containing these lesions established that there was significant inhibition of re...

متن کامل

Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity

DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitina...

متن کامل

Translesion synthesis of O4-alkylthymidine lesions in human cells

Environmental exposure, endogenous metabolism and cancer chemotherapy can give rise to alkylation of DNA, and the resulting alkylated thymidine (alkyldT) lesions were found to be poorly repaired and persistent in mammalian tissues. Unrepaired DNA lesions may compromise genomic integrity by inhibiting DNA replication and inducing mutations in these processes. In this study, we explored how eight...

متن کامل

DNA repair: Polymerases for passing lesions

Replicative DNA polymerases generally cannot pass lesions in the template strand. Now there is accumulating evidence for the widespread existence of a separate class of DNA polymerases that can carry out translesion synthesis in both mutagenic and error-free ways.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017